Experiment 2. Periodic Table and Periodic Law

Experimental Procedure

Objectives Introduction Experimental Procedure

• • Objectives

000

- ✓ To become more information familiar with the periodic table
- To observe and to generalize the trends of various atomic properties within groups and periods of elements
- ✓ To observe from experiment the trends of the chemical properties within groups and periods of elements

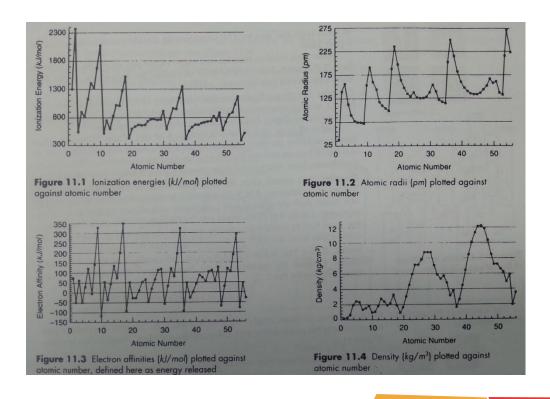
Experimental Procedure

SAFETY WARNING ! Strong Acids and Bases, Halogens

Wear safety glasses and gloves when handling with chemicals in a laboratory.

DISPOSAL:

Dispose of the waste water / halogen mixtures in the Waste Halogens container in the chemical hood.


CLEANUP:

Rinse the test tubes with copious amounts of tap water And twice with distilled water. Discard the rinses in the container.

000

A. Periodic Trends in Physical Properties (dry Lab)

The periodic trends for the elements are analyzed through a series of questions on the *Report Sheet*

Summary

The periodic trends for the elements are analyzed through a series of questions on the **Report Sheet**.

Figure 11.1: Ionization energy (KJ/mol)
Figure 11.2: Atomic radii (pm)
Figure 11.3: Electron Affinities (KJ/mol)
Figure 11.4: Density (Kg/m³)

PART B. The Appearance of Some Representative Elements

Prepare a hot water bath for PART B-3.

B-1. Sample of elements

Na, Mg, Al, Si, S

Record your Observations on the Report Sheet.

Summary for Part B Conduct this PART experiments in the fume hood or near the mouth of movable arm hood.

Part #	PART B.2	PART B.3	PART B.4
Preparation of Halogen	Preparation of Cl ₂	Preparation of Br ₂	Preparation of I_2
150-mm test tube #	#1	#2	#3
Steps	 Step 1: In a clean test tube, Add 2 mL of 5% NaOCI solution and <u>10 drops of cyclohexane (Agitate the mixture)</u> and 10 drops of 6M HCI Step 2: Swirl or agitate it Step3: Record your observation.(★1) 	 Step 1: In a clean test tube, Add 2 mL of 3M KBr and <u>10 drops of cyclohexane</u> and 5-10 drops of 8M HNO₃ Step 2: Swirl or agitate it. Step 3: Place the test tube in a hot water Step4: Record your observation (★2) 	 Step1: In a clean test tube, Add 2 mL 3M KI and <u>10 drops</u> of cyclohexane and 5-10 drops of 8M HNO₃ Step2: Swirl or agitate it. Step3: Place the test tube in a hot water Step4: Record your observation. (★3)
	<i>Do not discard !</i> Save for PART C.1	<i>Do not discard !</i> Save for PART C.2	<i>Do not discard !</i> Save for PART C.3

000

- Prepare a hot bath for Part B.3.
- **1.** Samples of elements
 - 1) Samples of the third period elements (Na, Mg, Al, Si, S) on the table
 - a. Na is stored under a non-aqueous liquid to prevent rapid air oxidation
 - b. Polish the Mg and Al metal strips with steel wool for better viewing.

2) Record your observations on the *Report Sheet*.

OOO 2. Chlorine (In the fume hood or near the arm hood)

- In a clean, 150 mm test tube, place 2 ml of a sodium hypochlorite, NaOCl, solution and 10 drops of cyclohexane.
- 2) Agitate the mixture.
- 3) Add ~ 10 drops of 6 M HCl (*Caution!*).
- 4) Agitate the mixture (with the stirring rod).
- 5) Note the color of the chlorine in the cyclohexane layer.
- 6) Record your observation and save the mixture for **Part C.1**.

```
000
```

- 3. Bromine (In the fume hood or near the arm hood)
 - Clean test tube, place 2 ml of 3 M KBr solution and 10 drops of cyclohexane
 - 2) Add 5-10 drops of 8 M HNO₃ (*Caution !*)
 - 3) Agitate the mixture and place the test tube in a hot water bath to increase the reaction rate
 - 4) Note the color of the bromine in the cyclohexane layer.
 - 5) Do not discard save for **Part C.2**.

000 4. Iodine

- 000
- 1) Clean test tube, place 2 ml of 3 M KI solution and 10 drops of cyclohexane.
- 2) Add 5-10 drops of 8 M HNO₃ (*Caution !*).
- 3) Agitate the mixture and place the test tube in a hot water bath to increase the reaction rate.
- 4) Record compare the appearance of the three halogens dissolved in the cyclohexane.
- 5) Save for **Part C.3**.

000

C. The Chemical Properties of the Halogens

Summary for Part C

000

PART C.1 **PART C. 3** PART C.2 Cl₂/Cyclohexane Br₂/Cyclohexane I₂/Cyclohexane Solution From PART B.2 Solution From PART B.3 Solution From PART B.4 KBr NaCl ΚI NaCl KI KBr 100-mmTest tube #1 #2 #3 #4 #5 #6

Step1. Add a pinch of solidStep2: Add an equal portion of the halogen/cyclohexane solutionStep3: Swirl the solution, observe, and record.

Write appropriate net ionic equations. $(\star_4)(\star_5)(\star_6)$

• • • • Prepare six clean, small (~100 mm) test tube.

- 1. Chlorine and its reactions with bromide and iodide ions
 - 1) In Clean two small test tubes
 - a. Add a pinch of solid **KBr** to the **first** test tube.
 - b. Add a pinch of solid **KI** to the **second** test tube.
 - 2) Use a dropping pipet to withdraw the chlorine/cyclohexane layer from Part B.2.
 - 3) Add an equal portion to the two test tubes.
 - 4) Agitate the solution, observe, and record.
 - 5) Write appropriate net ionic equations.

000

- 2. Bromine and its reactions with chloride and iodides ions
 - 1) Clean two small test tubes.
 - a. Add a pinch of solid NaCl to the third test tube
 - b. Add a pinch of solid **KI** to the **fourth** test tube
 - 2) Use a dropping pipet to withdraw the bromine/cyclohexane layer from **Part B.3**.
 - 3) Add an equal portion to the two test tubes.
 - 4) Agitate the solution, observe, and record.
 - 5) Write appropriate net ionic equations.

OOO 3. Iodine and its reactions with chloride and bromide ions

- 1) 1) In Clean two small test tubes,
 - a. Add a pinch of solid **NaCl** to the **fifth** test tube.
 - b. Add a pinch of solid **KBr** to the **sixth** test tube.
- 2) Use a dropping pipet to withdraw the iodine/cyclohexane layer from **Part B.4.**
- 3) Add an equal portion to the two test tubes.
- 4) Agitate the solution, observe, and record.
- 5) Write appropriate net ionic equations.

D. The Chemical Properties of the Halides

Summary for PART D

1. The reactions of the halides with various metal ions

Reactions	PART D.1-a) Slowly add 10 drops of 2 M $Ca(NO_3)_{2.}$ (Vary the color of the background of the test tubes for observation)	PART D.1-b) Add slowly 10 drops of 0.1 M AgNO ₃ . After 1min, add 10 drops of 3 M NH _{3.}	PART D.1-c) Add 1 drop of 6 M HNO ₃ and slowly add 10 drops of $0.1M Fe(NO_3)_3$.
NaF + 10 drops of distilled water	100-mm test tube # 1	#2	#3
NaCI + 10 drops of distilled water	#4	#5	#6
KBr + 10 drops of distilled water	#7	#8	#9
KI + 10 drops of distilled water	#10	#11	#12

Step 1: Add a pinch of solid + 10 drops of distilled water

Step 2: Add drops of the metal ion solution to each test tubes

Step 3: Observe closely and over a period of time. $(\star_7)(\star_8)(\star_9)$

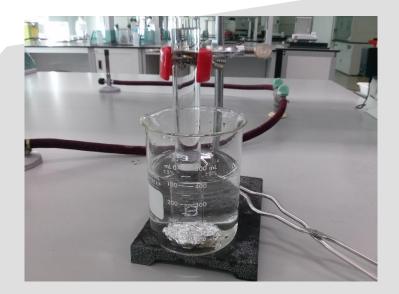
Step 4: Record and summarize your observations of chemical activity with the halides with the Ca²⁺, Ag⁺, and Fe³⁺ ions.

- Prepare twelve clean, small (~100 mm) test tube
- 1. The reactions of the halides with various metal ions

Label 12 clean, small test tubes

- Test tubes 1, 2 and 3 : a pinch of **NaF** and 10 drops of water
- Test tubes 4, 5 and 6 : a pinch of **NaCl** and 10 drops of water
- Test tubes 7, 8 and 9 : a pinch of **KBr** and 10 drops of water
- Test tubes 10, 11 and 12 : a pinch of **KI** and 10 drops of water

- a) Slowly add 10 drops of 2 M **Ca(NO₃)**² to test tubes 1, 4, 7 and 10.
- b) Slowly add 10 drops of 0.1 M **AgNO**₃ to test tubes 2, 5, 8 and 11.
- c) Add 1 drop of 6 M HNO₃ (Caution) and slowly add 10 drops of 0.1 M **Fe(NO₃)**₃ to the test tubes 3, 6, 9 and 12.
- d) Summarize your observations of the chemical activity for halides with the Ca²⁺, Ag⁺ and Fe³⁺ ions.



E. Chemical Reactivity of Some Representative Elements

E.1. Na

TA Demonstration Only

Test the gas by holding the mouth of the inverted test tube over a Bunsen flame. $(\bigstar 10)$ Account for the appearance of the color change in the solution.

E.2. Mg and Al

Reactions PART E.2-a) With Acid **PART E.2-b)** With Base clean 100-mm test tube #1 Mg # 1 Al #2 #2 Step 1: Add (count) drops of 6 M NaOH to the test tube with Al ion solution until precipitate appears. Step 1: Cut 5-mm pieces and place them into separate small test tubes. Step 2: Add the same number of drops to the test tube containing the Mg ion solution. Step 2: Add <u>1 mL of 6 M HCl</u> to each tube. Steps Record your observations. (+14)Which metal reacts more rapidly? $(\bigstar 12)$ What is the gas that is evolved? $(\bigstar 13)$ Step 3. Add drops of 6 M NaOH until both solutions are again colorless. Observe closely as each drop Record your observation. is added. Record and explain.

E.3. Solubilities of Alkaline-earth cations

Solubility	0.1 M MgCl ₂	o.1 M CaCl ₂	0.1 M Sr(NO ₃) ₂
PART E.3-a)	test tube #1 (+ 5 drops of 0.10M NaOH + 1 ~ 2 drops of 1.0 M NaOH)	#2 (+ 5 drops of 0.10M NaOH + 1 ~ 2 drops of 1.0 M NaOH)	#3 (+ 5 drops of 0.10M NaOH + 1 ~ 2 drops of 1.0 M NaOH)
PART E.3-b)	#4 (+5 drops of 0.10 M Na ₂ SO ₄ + a pinch of solid Na ₂ SO ₄)	#5 (+5 drops of 0.10 M Na ₂ SO ₄ + a pinch of solid Na ₂ SO ₄)	#6 (+5 drops of 0.10 M Na ₂ SO ₄ + a pinch of solid Na ₂ SO ₄)

Step 1: Place 10 drops of each cation in three separate, clean 100-mm test tubes.

Step 2: Count and add 5 drops of $0.10 \text{ M NaOH or } 0.10 \text{ M Na}_2\text{SO}_4$ until a cloudiness appears in each test tube. You can observe a change in appearance about one of three cations.

Step 3: Add $1 \sim 2$ drops of <u>1.0 M NaOH or a pinch of solid Na₂SO₄ to determine the order of one of two cations.</u>

Step 4: Predict the trend in the solubility of the hydroxides $(\bigstar 15)$ and the sulfates $(\bigstar 16)$ of the Group 2A cations.

E.4. Sulfurous acid and sulfuric acid (In a hood or near arm hood)

Solubility	5 drops of 6 M HCl
PART E.4-a) Na ₂ SO ₃	#1
PART E.4-b) Na ₂ SO ₄	#2

Step 1: Place a double pinch of each solid in two separate, clean 100-mm test tubes.

Step 2: Add 5 drops of 6 M HCl.

Step 3: Test the evolved gas with <u>wet blue litmus paper</u>. Write a balanced equation for the reaction. $(\star 17)$

Step 4: Account for any differences or similarities in your observations. (**★18**)

- 1. Sodium
 - Place a pea-sized piece of aluminum foil and add 2 mL of 6 M NaOH in a 100-mm test tube.
 - 2) Place it in a 250-mL beaker and cover the test tube up with a 150-mm test tube. It will bubble slowly. Allow the reaction to proceed for 5 minutes. Stopper the test tube.
 - 3) Test the gas by holding the mouth of the inverted test tube over a Bunsen flame or another open flame. (A loud pop indicates the presence of hydrogen gas.)

Magnesium and aluminum

1) Reaction with acid

- a. Polish 5 cm strips of Mg and Al metal.
- b. Cut 5 mm pieces and place them into separate small test tubes.
- c. Add <u>1 mL of 6 M HCl</u> to each test tube.
- d. Which metal reacts more rapidly? What is the gas that is evolved?
- 2) Reaction with base
 - a. Add drops of 6 M NaOH to each test tube until a precipitate appears.
 - b. Continue to add NaOH to the test containing the aluminum ion until a change in appearance occurs.
 - c. Add the same number of drops to the test tube containing the magnesium ion .
 - Add drops <u>of 6 M NaOH</u> until both solution are again colorless.

Solubilities of alkaline-earth cations

1) Solubility of alkaline-earth cations

- a. Place 10 drops of 0.1 M MgCl₂, 0.1 M CaCl₂ and 0.1 M Sr(NO₃)₂ in three separate, clean test tubes.
- b. Count and drops of 0.10 M NaOH until a cloudiness appears in each test tube.
- c. Predict the trend in the solubility of the hydroxides of the Group 2A cations.

2) Solubility of the sulfates

- a. Place 10 drops of 0.1 M MgCl₂, 0.1 M CaCl₂ and 0.1 M Sr(NO₃)₂ in three separate, clean test tubes
- b. Count and add drops of 0.10 M Na₂SO₄ until a cloudiness appears in each test tube
- Predict the trend in the solubility of the sulfates of the Group 2A cations

5.

4. Sulfurous acid and sulfuric acid

- Place a double pinch of solid sodium sulfite, Na₂SO₃, into a clean, small or medium-sized test tube.
- 2) Add 5-10 drops of 6 M HCl.
- 3) Test the evolved gas with wet blue litmus paper.
- 4) Write the balanced equation for the reaction.
- 5) Repeat the test, substituting solid sodium sulfate, Na₂SO₄, for the Na₂SO_{3.}

000

DISPOSAL:

Dispose of the waste water / halogen mixtures in the Waste Halogens container.

CLEANUP:

Rinse the test tubes with copious amounts of tap water And twice with distilled water. Discard the rinses in the container.